Quiz \#4 (CSE4190.410)
October 19, 2011 (Wednesday)

1. (10 points) In the line drawing algorithm of Bresenham, derive the initial value

$$
p_{0}=2 \Delta y-\Delta x
$$

$$
\begin{array}{ll}
p_{0}=\Delta x\left(2 m\left(x_{0}+1\right)-2 y_{0}+2 b-1\right) & \\
=\Delta x\left(2\left(m x_{0}+b\right)+2 m-2 y_{0}-1\right) & \because y_{0}=m x_{0}+b \\
=\Delta x\left(2 y_{0}+2 m-2 y_{0}-1\right) & \\
=\Delta x(2 m-1) & \because m=\frac{\Delta y}{\Delta x} \\
=\Delta x\left(2 \frac{\Delta y}{\Delta x}-1\right) &
\end{array}
$$

2. (10 points) Consider a rotation R_{1} about an axis ($0,1,0$) by angle 60° and another rotation R_{2} about an axis $(0,0,1)$ by angle 60°. What is the axis and angle of the composite rotation $R_{1} R_{2}$?
$q_{1}=\left(\frac{\sqrt{3}}{2}, 0, \frac{1}{2}, 0\right)$
$q_{2}=\left(\frac{\sqrt{3}}{2}, 0,0, \frac{1}{2}\right)$
$q_{2} \cdot q_{1}=\left(\omega_{2} \omega_{1}-\left\langle\left(x_{2}, y_{2}, y_{2}\right),\left(x_{1}, y_{1}, y_{1}\right)\right\rangle, \omega_{2}\left(x_{1}, y_{1}, y_{1}\right)+\omega_{1}\left(x_{2}, y_{2}, y_{2}\right)+\left(x_{2}, y_{2}, y_{2}\right) \times\left(x_{1}, y_{1}, y_{1}\right)\right)$
$=\left(\frac{3}{4},-\frac{1}{4}, \frac{\sqrt{3}}{4}, \frac{\sqrt{3}}{4}\right)=\left(\frac{3}{4}, \frac{\sqrt{7}}{4}\left(-\frac{1}{\sqrt{7}}, \frac{\sqrt{3}}{\sqrt{7}}, \frac{\sqrt{3}}{\sqrt{7}}\right)\right.$
axis: $\frac{1}{\sqrt{7}}(-1, \sqrt{3}, \sqrt{3})$
angle: $2 \arccos \left(\frac{3}{4}\right)$
